WEAKLY ALMOST PERIODIC FUNCTIONALS CARRIED BY HYPERCOSETS(1)

BY

CHARLES F. DUNKL AND DONALD E. RAMIREZ

Abstract. For G a compact group and H a closed normal subgroup, we show that a weakly almost periodic (w.a.p.) linear functional on the Fourier algebra of G/H lifts to a w.a.p. linear functional on the Fourier algebra of G.

In the case of a compact abelian group G, the dual of a closed subgroup can be identified with a quotient group of the whole dual \hat{G} . If G is not abelian, and H is a closed normal subgroup, then an identification space, \tilde{H} , of the dual of H, \hat{H} , can be identified with a hypercoset structure on \hat{G} . Let H^{\perp} be the set of elements of \hat{G} whose kernel contains H. (Recall \hat{G} is the set of equivalence classes of continuous unitary irreducible representations of G.) Then \tilde{H} is identified with the set of hypercosets of H^{\perp} , with the trivial representation $H \to \{1\}$ of course identified with H^{\perp} itself. As in the abelian case, the Fourier algebra A(G) of G splits into a direct sum of A(G/H)-modules, one for each hypercoset of H^{\perp} . Again A(G/H) itself corresponds to H^{\perp} . We show here that each of these modules is finitely generated, and use this result to show that weakly almost periodic (w.a.p.) linear functionals on A(G/H) lift to w.a.p. linear functionals on A(G) (the set of such is denoted $W(\hat{G})$).

We show that if G has an infinite abelian homomorphic image, then the space of Fourier-Stieltjes transforms of measures on G is not dense in $W(\hat{G})$, and $W(\hat{G})$ is not equal to $\mathscr{L}^{\infty}(\hat{G})$, the dual of A(G). We will use some of the methods developed in our previous paper on w.a.p. functionals [6].

1. Notation and hypercosets. Let G be a compact nonabelian group. Using our previous notation [3, Chapters 7, 8] we let \hat{G} denote the set of equivalence classes of continuous unitary irreducible representations of G. For $\alpha \in \hat{G}$, choose $T_{\alpha} \in \alpha$, then T_{α} is a continuous homomorphism of G into $U(n_{\alpha})$, the group of $n_{\alpha} \times n_{\alpha}$ unitary matrices where n_{α} is the dimension of α . We use $T_{\alpha}(x)_{ij}$ to denote the matrix entries of $T_{\alpha}(x)$, $1 \le i$, $j \le n_{\alpha}$, and $T_{\alpha ij}$ to denote the (continuous) function $x \mapsto T_{\alpha}(x)_{ij}$. Let $V_{\alpha} = \operatorname{Sp} \{T_{\alpha ij} : 1 \le i, j \le n_{\alpha}\}$ (where Sp denotes the linear span), then V_{α} is an n_{α}^2 -dimensional space of continuous functions invariant under left

Received by the editors October 15, 1970.

AMS 1970 subject classifications. Primary 22C05, 43A40, 43-00.

Key words and phrases. Weakly almost periodic functional, quasi-uniform convergence, Fourier algebra, hypercoset, modules, Fourier-Stieltjes transforms.

⁽¹⁾ This research was supported in part by NSF contract number GP-19852.

Copyright © 1972, American Mathematical Society

and right translation by G. Further let $\chi_{\alpha}(x) = \operatorname{trace}(T_{\alpha}(x)) = \sum_{i=1}^{n} T_{\alpha}(x)_{ii}$. The function χ_{α} is called the character of α and it, as well as V_{α} , is independent of the choice of $T_{\alpha} \in \alpha$.

For α , $\beta \in \hat{G}$ one can form the tensor product $T_{\alpha} \otimes T_{\beta}$ of the two representations. This tensor product decomposes into irreducible components: $T_{\alpha} \otimes T_{\beta} \cong \sum_{\gamma \in \hat{G}} M_{\alpha\beta}(\gamma)T_{\gamma}$, where $M_{\alpha\beta}(\gamma) = \int_{G} \chi_{\alpha}\chi_{\beta}\bar{\chi}_{\gamma} dm_{G}$, a nonnegative integer $(m_{G}$ is the normalized Haar measure on G). This decomposition can also be written in the form $\chi_{\alpha}\chi_{\beta} = \sum_{\gamma} M_{\alpha\beta}(\gamma)\chi_{\gamma}$ (a finite sum). For $E, F \subseteq \hat{G}$, we define

$$E \otimes F = \{ \gamma \in \hat{G} : M_{\alpha\beta}(\gamma) \neq 0, \text{ some } \alpha \in E, \beta \in F \}.$$

This operation makes \hat{G} into a hypergroup. For each $\alpha \in \hat{G}$, there is a conjugate $\bar{\alpha} \in \hat{G}$ such that $\chi_{\bar{\alpha}}(x) = (\chi_{\alpha}(x))^{-}$ $(x \in G)$. If $E \subseteq \hat{G}$ and $E \otimes E \subseteq E$, then E is called a subhypergroup, and if further $\bar{E} = \{\bar{\alpha} : \alpha \in E\} \subseteq E$ then E is called a normal subhypergroup.

For any set $S \subseteq G$, let $S^{\perp} = \{ \alpha \in \hat{G} : S \subseteq \text{kernel } T_{\alpha} \}$ then S^{\perp} is a normal subhypergroup. For $E \subseteq \hat{G}$, let $E^{\perp} = \bigcap_{\alpha \in E} (\text{kernel } T_{\alpha})$, a closed normal subgroup of G. Helgason [7] has shown that if H is a closed normal subgroup of G then $(H^{\perp})^{\perp} = H$.

If E is a normal subhypergroup of \hat{G} and $\alpha \in \hat{G}$ then $\alpha \otimes E$ is called a hypercoset of E. We will prove later that \hat{G} is the disjoint union of hypercosets of E.

Let X be an n-dimensional complex inner product space. Let $\mathscr{B}(X)$ be the space of linear maps: $X \to X$. The operator norm of $A \in \mathscr{B}(X)$ is defined to be $\|A\|_{\infty} = \sup\{|A\xi| : \xi \in X, |\xi| \le 1\}$. The trace of A is defined to be $\operatorname{Tr} A = \sum_{i=1}^{n} (A\xi_i, \xi_i)$ where $\{\xi_i\}_{i=1}^{n}$ is any orthonormal basis for X and (\cdot, \cdot) is the inner product in X. We define the dual norm to $\|\cdot\|_{\infty}$ by

$$||A||_1 = \sup \{|\operatorname{Tr}(AB)| : B \in \mathcal{B}(X), ||B||_{\infty} \le 1\}.$$

One can show that $||A||_1 = \text{Tr}(|A|)$, where $|A| = (A^*A)^{1/2}$.

Let ϕ be a set $\{\phi_{\alpha}: \alpha \in \hat{G}, \phi_{\alpha} \in \mathcal{B}(C^{n_{\alpha}}), \sup_{\alpha} \|\phi_{\alpha}\|_{\infty} < \infty\}$. The set of all such ϕ is denoted by $\mathcal{L}^{\infty}(\hat{G})$. It is a C^* -algebra under the norm $\|\phi\|_{\infty} = \sup\{\|\phi_{\alpha}\|_{\infty}: \alpha \in \hat{G}\}$ and coordinatewise operations (* denotes the operator adjoint).

Let $\mathscr{L}^1(\hat{G}) = \{\phi \in \mathscr{L}^\infty(\hat{G}) : \|\phi\|_1 = \sum_{\alpha \in \hat{G}} n_\alpha \|\phi_\alpha\|_1 < \infty\}$. Then $\mathscr{L}^1(\hat{G})$ with the norm $\|\cdot\|_1$ is a Banach space and its dual may be identified with $\mathscr{L}^\infty(\hat{G})$ under the pairing $\langle \phi, \psi \rangle = \sum_{\alpha} n_\alpha \operatorname{Tr} (\phi_\alpha \psi_\alpha) \ (\phi \in \mathscr{L}^1(\hat{G}), \psi \in \mathscr{L}^\infty(\hat{G}))$. Let $\mu \in M(G)$, the measure algebra of G, then the Fourier transform of μ , $\hat{\mu}$, is the function $\alpha \mapsto \hat{\mu}_\alpha = \int_G T_\alpha(x^{-1}) \ d\mu(x) \ (\alpha \in \hat{G})$, and $\hat{\mu} \in \mathscr{L}^\infty(\hat{G})$ with $\|\hat{\mu}\|_\infty \leq \|\mu\|$. If $f \in C(G)$ (the continuous functions on G), then $\hat{f}_\alpha = \int_G T_\alpha(x^{-1}) f(x) \ dm_G(x) \ (\alpha \in \hat{G})$.

We will now define A(G), the Fourier algebra of G. Let

$$A(G) = \{ f \in C(G) : \hat{f} \in \mathcal{L}^1(\hat{G}) \},$$

then A(G) is in fact isomorphic to $\mathcal{L}^1(\hat{G})$, since for $\phi \in \mathcal{L}^1(\hat{G})$ the function $f(x) = \sum_{\alpha \in \hat{G}} n_\alpha \operatorname{Tr} (\phi_\alpha T_\alpha(x))$ $(x \in G)$ is continuous and $\hat{f} = \phi$. Put $||f||_A = ||\hat{f}||_1$. Further

A(G) is a (commutative) Banach algebra under the pointwise operations on G; and its dual is $\mathscr{L}^{\infty}(\hat{G})$, under the pairing

$$\langle f, \phi \rangle = \sum_{\alpha} n_{\alpha} \operatorname{Tr} (\hat{f}_{\alpha} \phi_{\alpha}) \qquad (f \in A(G), \phi \in \mathscr{L}^{\infty}(\hat{G}));$$

for proofs see [3, p. 93].

DEFINITION 1.1. For $\phi \in \mathscr{L}^{\infty}(\hat{G})$ define the carrier of ϕ , $\operatorname{cr} \phi = \{\alpha \in \hat{G} : \phi_{\alpha} \neq 0\}$. For $E \subset \hat{G}$, let $\mathscr{L}^{\infty}(E) = \{\phi \in \mathscr{L}^{\infty}(\hat{G}) : \operatorname{cr} \phi \subseteq E\}$, and let $A(E) = \{f \in A(G) : \operatorname{cr} \hat{f} \subseteq E\}$. In fact A(E) is the closed span of $\{V_{\alpha} : \alpha \in E\}$.

PROPOSITION 1.2. The spaces A(E), $E \subseteq \hat{G}$, are exactly the closed subspaces of A(G) which are invariant under left and right translation by G. The dual of A(E) is $\mathscr{L}^{\infty}(E)$.

PROPOSITION 1.3. Let E, $F \subseteq \hat{G}$, then the closed linear span of

$$\{fg: f \in A(E), g \in A(F)\}\$$

is equal to $A(E \otimes F)$.

COROLLARY 1.4. For $E \subseteq \hat{G}$, A(E) is a subalgebra of A(G) if and only if E is a subhypergroup. Further A(E) is a conjugate-closed $(f \mapsto \overline{f})$ subalgebra of A(G) if and only if E is a normal subhypergroup, and in that case

$$A(E) = \{ f \in A(G) : f(h_1xh_2) = f(x), \text{ for all } h_1, h_2 \in E^1, x \in G \},$$

the functions in A(G) constant on cosets of E^{\perp} , a closed normal subgroup of G.

COROLLARY 1.5. If E is a finite subhypergroup of \hat{G} then E is normal.

Proof. In fact A(E) is a finite dimensional subalgebra of a conjugate closed algebra A(G) and is thus itself conjugate-closed (since the maximal ideal space of A(E) is a finite set). \square

REMARK 1.6. The Fourier algebra of a compact group G is the subject of [3, Chapter 8]. Helgason [7] constructed the duality between normal subhypergroups of \hat{G} and closed normal subgroups of G. Translation-invariant uniformly closed linear subspaces of C(G) are discussed by Rider in [9]. What is observed by Iltis [8], that finite subhypergroups are normal, is implicit in Rider [9, p. 980].

2. Restrictions of representations to normal subgroups. In this section, G denotes a compact group, and H denotes a closed normal subgroup of G. Define \hat{H} similarly to \hat{G} , and denote the character of $\gamma \in \hat{H}$ by ξ_{γ} , and let $T_{\gamma}^{H} \in \gamma$. Denote the normalized Haar measure of H by m_{H} . There exists a natural homomorphism of G into the group of automorphisms of H; namely, for $x \in G$, let $S_{x}h = xhx^{-1}$ $(h \in H)$, then S_{x} is an automorphism of H. Each S_{x} induces a permutation \hat{x} on \hat{H} such that $\xi_{\hat{x}\gamma}(h) = \xi_{\gamma}(S_{x}h)$ $(h \in H)$. Now define an equivalence relation on \hat{H} by $\gamma_{1} \sim \gamma_{2}$ if and only if $\gamma_{2} = \hat{x}\gamma_{1}$ for some $x \in G(\gamma_{1}, \gamma_{2} \in \hat{H})$. Denote the set of such equivalence classes by \hat{H} . Let $\alpha \in \hat{G}$ then $T_{\alpha}|H$ is a continuous unitary representation of H and thus decomposes:

$$T_{\alpha}|H=\sum_{\gamma\in\hat{\mathcal{P}}}a_{\gamma}T_{\gamma}^{H}$$

where the a_{γ} 's are nonnegative integers and only finitely many are nonzero.

THEOREM 2.1. Let $\alpha \in \hat{G}$, then there is a positive integer N_{α} and a class $\Gamma_{\alpha} \in \tilde{H}$ such that

$$\chi_{\alpha}|H=N_{\alpha}\sum_{\gamma\in\Gamma_{\alpha}}\xi_{\gamma}.$$

Further each equivalence class in \tilde{H} is finite.

Proof. This theorem is nothing but the compact group analogue to the well-known finite groups result (see e.g. [1, p. 278]). We sketch an argument. Write $\chi_{\alpha}|H=\sum_{\gamma}c_{\gamma}\xi_{\gamma}$. Now $\chi_{\alpha}|H$ is invariant under each S_{x} , $x\in G$, thus if $\gamma_{1}\sim\gamma_{2}$ then $c_{\gamma_{1}}=c_{\gamma_{2}}$. It remains to show that if $c_{\gamma_{1}}\neq0$ and $c_{\gamma_{2}}\neq0$ then $\gamma_{1}\sim\gamma_{2}$. Now $d\mu=\sum_{\gamma\in\Gamma_{\alpha}}\xi_{\gamma}\,dm_{H}$ is a central measure in M(G), and for any $\alpha\in\hat{G}$, μ is orthogonal to either all or none of the diagonal entry functions. If $\gamma'\notin\Gamma_{\alpha}$, then

$$\int_{H} \xi_{\gamma'} \left(\sum_{\gamma \in \Gamma_{n}} \xi_{\gamma} \right) dm_{H} = 0.$$

Thus the class $\Gamma_{\alpha} \in \tilde{H}$ is uniquely determined and is evidently finite. However any $\gamma \in \hat{H}$ appears in the restriction of some $\alpha \in \hat{G}$ (induced representation argument) and thus any class in \tilde{H} is finite. \square

COROLLARY 2.2. For any $\alpha, \beta \in \hat{G}$, either $n_{\beta}\chi_{\alpha}|H = n_{\alpha}\chi_{\beta}|H$ or $\int_{H} \chi_{\alpha}\bar{\chi}_{\beta} dm_{H} = 0$.

Proof. For $\alpha, \beta \in \hat{G}$, if $\Gamma_{\alpha} = \Gamma_{\beta}$ then $n_{\alpha}/N_{\alpha} = \sum_{\gamma \in \Gamma_{\alpha}} \xi_{\gamma}(e) = n_{\beta}/N_{\beta}$ (e is identity in G). If $\Gamma_{\alpha} \neq \Gamma_{\beta}$, then $\int_{H} \chi_{\alpha} \bar{\chi}_{\beta} dm_{H} = 0$ by the orthogonality relations for characters of H. \square

REMARK 2.3. Rider uses this corollary in [10].

REMARK 2.4. For $\alpha \in \hat{G}$, $\alpha \in H^{\perp}$ if and only if $\Gamma_{\alpha} = \{\{1\}\}$ ($\{1\}$ denotes the trivial representation $H \to \{1\}$), and in this case, $\chi_{\alpha} | H = n_{\alpha} = N_{\alpha}$.

THEOREM 2.5. For $\alpha, \beta \in \hat{G}$, $\alpha \in \beta \otimes H^{\perp}$ if and only if $\Gamma_{\alpha} = \Gamma_{\beta}$. Thus \hat{G} is split into disjoint hypercosets, and these hypercosets are indexed by \tilde{H} .

Proof. Let $\alpha \in \beta \otimes H^{\perp}$, then there exists some $\delta \in H^{\perp}$ such that $M_{\beta\delta}(\alpha) \neq 0$, that is $\chi_{\beta}\chi_{\delta} = \chi_{\alpha} + \phi$, where ϕ is some nonnegative integer combination of characters. Now restrict to H to obtain

$$n_{\delta}N_{\beta}\sum_{\gamma\in\Gamma_{\beta}}\xi_{\gamma}=N_{\alpha}\sum_{\gamma\in\Gamma_{\alpha}}\xi_{\gamma}+\phi|H,$$

thus $\Gamma_{\alpha} \subset \Gamma_{\beta}$, hence $\Gamma_{\alpha} = \Gamma_{\beta}$.

Conversely if $\Gamma_{\alpha} = \Gamma_{\beta}$, then $(\chi_{\alpha}|H)(\chi_{\beta}|H)^{-} = 1 + \phi$ (some ϕ as above). (This follows from the relation $M_{\gamma\bar{\gamma}}(\{1\}) = \int_{H} |\xi_{\gamma}|^{2} dm_{H} = 1$ for any $\gamma \in \hat{H}$.) This implies that $(\alpha \otimes \bar{\beta}) \cap H^{\perp} \neq \emptyset$. Thus there is a $\delta \in H^{\perp}$ such that $M_{\alpha\bar{\beta}}(\delta) \neq 0$, but

$$M_{\alpha\bar{\beta}}(\delta) = \int_{G} \chi_{\alpha}\bar{\chi}_{\beta}\bar{\chi}_{\delta} dm_{G} = \int_{G} \bar{\chi}_{\alpha}\chi_{\beta}\chi_{\delta} dm_{G} = M_{\beta\delta}(\alpha)$$

and so $\alpha \in \beta \otimes H^{\perp}$. \square

Observe that the Fourier algebra of G/H is isomorphic to a closed subalgebra of A(G), namely $A(H^{\perp})$ (which we will denote by A_H), since $(G/H)^{\wedge}$ may be identified with H^{\perp} . We will now decompose A(G) into a direct sum of A_H -modules.

Theorem 2.6. To each $\Gamma \in \widetilde{H}$ there corresponds a closed subspace A_{Γ} of A(G) which is also an A_H -module. Further each $f \in A(G)$ has a unique decomposition $f = \sum_{\Gamma \in \widetilde{H}} f_{\Gamma}$, where $f_{\Gamma} \in A_{\Gamma}$ and $\|f\|_A = \sum_{\Gamma \in \widetilde{H}} \|f_{\Gamma}\|_A$. Also the A_{Γ} 's are the minimal closed left and right translation invariant A_H -submodules of A(G).

Proof. For $\Gamma \in \widetilde{H}$, let $E_{\Gamma} = \{\alpha \in \widehat{G} : \Gamma_{\alpha} = \Gamma\}$, that is, the hypercoset of H corresponding to Γ . Then put $A_{\Gamma} = A(E_{\Gamma})$. Clearly \widehat{G} is the disjoint union of $\{E_{\Gamma}\}_{\Gamma \in \widehat{H}}$, so the decomposition of A(G) follows from the obvious decomposition of $\mathscr{L}^1(\widehat{G})$. Let $\Gamma \in \widetilde{H}$ and choose $\alpha \in E_{\Gamma}$ then $E_{\Gamma} = \alpha \otimes H^{\perp}$, so that $E_{\Gamma} \otimes H^{\perp} = E_{\Gamma}$ and thus, by Proposition 1.3, $A_{H} \cdot A_{\Gamma} \subset A_{\Gamma}$. So A_{Γ} is a closed A_{H} -submodule of A(G). If a nontrivial closed left and right translation invariant A_{H} -module is contained in A_{Γ} , then it is determined by some nonempty subset $F \subset E_{\Gamma}$. But if $\alpha \in F$ and $\beta \in H^{\perp}$ then $\alpha \otimes \beta \subset F$, thus F is a hypercoset, hence equals E_{Γ} . \square

REMARK 2.7. If G is abelian then each A_{Γ} has a single generator (in the algebraic as well as the topological sense) over A_H . In the general case for $\Gamma \in \widetilde{H}$ and some $\alpha \in E_{\Gamma}$, the functions $\{T_{\alpha ij}: 1 \leq i, j \leq n_{\alpha}\}$ generate A_{Γ} topologically, but it is not clear that they do so algebraically. However the following is true.

THEOREM 2.8. Let $\Gamma \in \widetilde{H}$, then A_{Γ} is a finitely generated A_{H} -module, that is there exists $g_1, \ldots, g_m \in A_{\Gamma}$ (some $m < \infty$) so that each $f \in A_{\Gamma}$ may be written as $f = \sum_{i=1}^m k_i g_i$, with $k_i \in A_H$. Further there exists a constant $M < \infty$, such that the functions k_i may be chosen with $||k_i||_A \leq M ||f||_A$.

Proof. In a paper of Dunkl [2] the following is shown: let τ be a continuous unitary representation of H on a finite dimensional space V, and let A(G, V) be the space of V-valued functions on G with each coordinate function in A(G). Define

$$M(\tau) = \{ f \in A(G, V); f(hx) = \tau(h)f(x) \text{ for all } h \in H, x \in G \},$$

denoted $A(\tau)$ in [2]. Then $M(\tau)$ is a finitely generated (algebraically) A_H -module. We now point out the applicability of this theorem to the present situation. Pick $\alpha \in \Gamma$, and let $V = V_{\alpha}|H$. Recall $V_{\alpha} = \operatorname{Sp} \{T_{\alpha ij}: 1 \leq i, j \leq n_{\alpha}\}$ so that V is a finite dimensional space of continuous functions on H, and is in fact the left and right translation invariant (by H) space generated by $\{\xi_{\gamma}: \gamma \in \Gamma\}$. This shows that V depends only on Γ , that for any $f \in A_{\Gamma}$, $f|H \in V$, and finally that V is invariant under each S_x , $x \in G$ (that is, if $g \in V$, $x \in G$, then the function $h \mapsto g(xhx^{-1})$ is in $V(h \in H)$). Observe that a continuous unitary representation τ of H is realized on V, namely right translation, with the inner product on V given by $(f, g)_H = \int_H f\overline{g} \ dm_H (f, g \in V)$, and $\tau(h)f(h_1) = f(h_1h)$ $(f \in V, h, h_1 \in H)$.

We claim that $M(\tau) = A_{\Gamma}$, in fact if $f \in A_{\Gamma}$ then assign to each $x \in G$ the function $f(x, \cdot)$: $h_1 \mapsto f(h_1 x) = (R(x) f)(h_1)$. Now A_{Γ} is invariant under the right translation

R(x) so $R(x)f|H \in V$, thus $f(x, \cdot) \in V$. Further for $x \in G$, $h \in H$, $f(hx, h_1) = f(h_1hx) = f(x, h_1h) = \tau(h)f(x, h_1)$ ($h_1 \in H$), that is, $f(hx, \cdot) = \tau(h)f(x, \cdot)$. Finally to check the coordinate functions of $f(x, \cdot)$ let $g \in V$ and consider the function $x \mapsto (f(x, \cdot), g)_H = \int_H f(hx)(g(h))^- dm_H = \mu * f(x)$, where μ is the measure $(g(h^{-1}))^- dm_H(h)$, and so $\mu * f \in A(G)$. Conversely, if $f \in M(\tau)$, so f is of the form f(x, h), with $f(x, \cdot) \in V$, then put f(x) = f(x, e). Thus $f \in A(G)$ (by finite dimensionality of V, point evaluation is a bounded linear functional). Further for each $x \in G$ let g = R(x)f|H, then $g(h) = f(hx) = f(hx, e) = \tau(h)f(x, e) = f(x, h)$ so the function $g \in V$, thus $f \in A_{\Gamma}$. Hence $A_{\Gamma} = M(\tau)$ and thus there exist generators $g_1, \ldots, g_m \in A_{\Gamma}$ (some $m < \infty$).

Now consider the bounded linear map $T: A_H \times A_H \times \cdots \times A_H$ $(m \text{ copies}) \to A_\Gamma$ defined by $T(k_1, \ldots, k_m) = \sum_{i=1}^m k_i g_i$. By the above paragraph T is onto and so by the open mapping theorem there exists $M < \infty$ such that $\{T(k_1, \ldots, k_m) : ||k_j||_A \le M\}$ $\supset \{f \in A_\Gamma : ||f||_A \le 1\}$. \square

3. **Homomorphisms.** Let π be a continuous homomorphism of a compact group G into a compact group K, and let H be the kernel of π . Then π induces the map $\pi_1 \colon C(K) \to C(G)$, given by $\pi_1 f(x) = f(\pi x)$, $f \in C(K)$, $x \in G$. The adjoint of π_1 , denoted by π^* , takes M(G) into M(K). Further π_1 maps A(K) into A(G), since A(K) is spanned by the continuous positive definite functions and these are preserved by π_1 . Also $\pi_1 | A(K)$ is a bounded operator on A(K) since each $f \in A(K)$ is a sum $f = f_1 - f_2 + i(f_3 - f_4)$, f_i positive definite and $\sum_{i=1}^4 f_i(e) \le 2 \|f\|_A$. Finally the adjoint of $\pi_1 | A(K)$ is a bounded map $\hat{\pi} : \mathcal{L}^{\infty}(\hat{G})$ into $\mathcal{L}^{\infty}(\hat{K})$. Let $\mathcal{M}(\hat{G})$, $\mathcal{M}(\hat{K})$ be the closures of $M(G)^{\wedge}$, $M(K)^{\wedge}$ in $\mathcal{L}^{\infty}(\hat{G})$ and $\mathcal{L}^{\infty}(\hat{K})$ respectively.

PROPOSITION 3.1. $\hat{\pi}\mathcal{M}(\hat{G}) \subset \mathcal{M}(\hat{K})$.

Proof. Let $\mu \in M(G)$, then $\hat{\mu}$ satisfies the following: $\langle f, \hat{\mu} \rangle = \int_G f(x^{-1}) d\mu(x)$, $f \in A(G)$. Now let $g \in A(K)$, then

$$\langle g, \hat{\pi}\hat{\mu}\rangle = \langle \pi_1 g, \hat{\mu}\rangle = \int_G g(\pi x^{-1}) d\mu(x) = \int_K g(k^{-1}) d\pi^* \mu(k) = \langle g, (\pi^* \mu)\rangle.$$

Thus $\hat{\pi}\hat{\mu} = (\pi^*\mu)^{\hat{}} \in M(K)^{\hat{}}$. The continuity of $\hat{\pi}$ finishes the proof. \square

Observe that π factors into $G \to G/H \to K$, where G/H is identified with a closed subgroup of K. Further M(G/H) is identified with a closed subalgebra of M(G), namely $m_H * M(G)$ (note m_H is an idempotent, see [3, Chapter 9]). Also $\mathscr{L}^{\infty}((G/H)^{\wedge}) \cong \mathscr{L}^{\infty}(H^{\perp})$ and $\mathscr{M}((G/H)^{\wedge}) \cong \mathscr{M}(\hat{G}) \cap \mathscr{L}^{\infty}(H^{\perp})$ (since \hat{m}_H is the projection of $\mathscr{L}^{\infty}(\hat{G})$ onto $\mathscr{L}^{\infty}(H^{\perp})$).

Finally $\hat{\pi}$ takes $\mathcal{M}(\hat{G})$ onto $\mathcal{M}(\hat{K})$, or $\mathcal{L}^{\infty}(\hat{G})$ onto $\mathcal{L}^{\infty}(\hat{K})$ if and only if π maps G onto K, for otherwise πG is a proper closed subgroup of K, and $\phi \in \hat{\pi} \mathcal{L}^{\infty}(\hat{G})$ if and only if spt $\phi \subset \pi G$ (where the support of ϕ , spt ϕ , is the least compact subset $E \subset K$ with the property that $f \in A(K)$, f = 0 on a neighborhood of E implies $\langle f, \phi \rangle = 0$).

Now we investigate the effect of $\hat{\pi}$ on $W(\hat{G})$, the weakly almost periodic (w.a.p.) elements of $\mathcal{L}^{\infty}(\hat{G})$. We state some appropriate definitions and results from our previous paper [6].

PROPOSITION 3.2. $\mathscr{L}^{\infty}(\hat{G})$ is an A(G)-module. The action is defined by $\langle g, f \cdot \phi \rangle = \langle fg, \phi \rangle$ $(f, g \in A(G), \phi \in \mathscr{L}^{\infty}(\hat{G}))$, and $||f \cdot \phi||_{\infty} \leq ||f||_{A} ||\phi||_{\infty}$. Further $\operatorname{cr}(f \cdot \phi) \subset (\operatorname{cr} f)^{-} \otimes \operatorname{cr} \phi$.

DEFINITION 3.3. For $\phi \in \mathscr{L}^{\infty}(\hat{G})$, one says that ϕ is weakly almost periodic if the map $f \mapsto f \cdot \phi$ is a weakly compact operator of A(G) into $\mathscr{L}^{\infty}(\hat{G})$ $(f \in A(G))$. The set of all such ϕ is denoted by $W(\hat{G})$.

DEFINITION 3.4. Let $B = \{ f \in A(G) : ||f||_A \le 1 \}$. For $\alpha \in \hat{G}$, let $B_{\alpha} = B \cap V_{\alpha}$. Let $E = \bigcup_{\alpha \in \hat{G}} B_{\alpha}$.

Some properties of $W(\hat{G})$ (see [6]):

- (1) $W(\hat{G})$ is a closed submodule of $\mathcal{L}^{\infty}(\hat{G})$.
- (2) For $\phi \in \mathcal{L}^{\infty}(\hat{G})$ to be in $W(\hat{G})$ it is necessary and sufficient that $\{f_n \cdot \phi\}$ have a weakly convergent subsequence for any sequence $\{f_n\} \subset E$ (also true if E is replaced by B).

THEOREM 3.5. Let π be a continuous homomorphism of G into K (compact groups). Then $\hat{\pi}W(\hat{G}) \subseteq W(\hat{K})$.

Proof. Suppose $\phi \in W(\hat{G})$, and $\{f_n\}$ is a bounded sequence in A(K). Then $\{\pi_1 f_n\}$ is a bounded sequence in A(G), and there exists a subsequence such that $(\pi_1 f_{n_j}) \cdot \phi$ converges weakly to $\psi \in \mathcal{L}^{\infty}(\hat{G})$. But $\hat{\pi}((\pi_1 f_{n_j}) \cdot \phi) = f_{n_j} \cdot (\hat{\pi} \phi)$, so $f_{n_j} \cdot \hat{\pi} \phi$ converges weakly to $\hat{\pi} \psi \in \mathcal{L}^{\infty}(\hat{K})$ (for $\hat{\pi}$, being strongly continuous, is weakly continuous). Hence $\hat{\pi} \phi \in W(\hat{K})$.

Henceforth we assume π is onto K so we identify \hat{K} with H^{\perp} , and $\mathcal{L}^{\infty}(\hat{K})$ with $\mathcal{L}^{\infty}(H^{\perp})$. We have just seen that the restriction map $\hat{\pi} \colon \mathcal{L}^{\infty}(\hat{G}) \to \mathcal{L}^{\infty}(H^{\perp})$ takes $W(\hat{G})$ into $W(\hat{K})$. We will now show that in fact $\hat{\pi}(W(\hat{G}) \cap \mathcal{L}^{\infty}(H^{\perp})) = W(\hat{K})$.

DEFINITION 3.6. Let $\{\phi_n\}$ be a sequence in $\mathscr{L}^{\infty}(\hat{G})$. Say $\phi_n \xrightarrow{n} \phi \in \mathscr{L}^{\infty}(\hat{G})$ quasi-uniformly if $(\phi_n)_{\alpha} \xrightarrow{n} \phi_{\alpha}$ for each $\alpha \in \hat{G}$, and for each $\varepsilon > 0$, $N = 1, 2, 3, \ldots$, there exist integers $m_1, \ldots, m_k \ge N$, such that $\min_{1 \le i \le k} \|(\phi_{m_i})_{\alpha} - \phi_{\alpha}\|_{\infty} < \varepsilon$ for each $\alpha \in \hat{G}$.

THEOREM 3.7 [6]. Let $\{\phi_n\} \subset \mathscr{L}^{\infty}(\hat{G})$. Then $\phi_n \xrightarrow{n} \phi \in \mathscr{L}^{\infty}(\hat{G})$ weakly if and only if $\sup_n \|\phi_n\|_{\infty} < \infty$, and every subsequence of $\{\phi_n\}$ converges quasi-uniformly to ϕ .

THEOREM 3.8. Let $\phi \in W(\hat{K})$, that is, $\phi \in \mathscr{L}^{\infty}(H^{\perp})$, and for each bounded sequence, $\{f_n\} \subset A(K) = A_H$ (see previous section), $\{f_n \cdot \phi\}$ has a weakly convergent subsequence. Then $\phi \in W(\hat{G})$ (note $\phi_{\alpha} = 0$ for $\alpha \notin H^{\perp}$).

Proof. Let $\{f_n\} \subseteq E = \bigcup_{\alpha} B_{\alpha}$, with $f_n \in B_{\alpha_n}$, $n = 1, 2, 3, \ldots$ We must show that $\{f_n \cdot \phi\}$ has a weakly convergent subsequence. There are two possibilities for $\{\alpha_n\}$:

(1) There are infinitely many distinct cosets $\bar{\alpha}_n \otimes H^{\perp}$. That is, there exists a subsequence f_{n_j} such that the sets $\operatorname{cr}(f_{n_j} \cdot \phi) \subset \bar{\alpha}_{n_j} \otimes H^{\perp}$ are all disjoint. Then $f_{n_j} \cdot \phi \xrightarrow{j} 0$ weakly by Theorem 3.7.

(2) Infinitely many $\alpha_n \in \alpha \otimes H^{\perp}$, some $\alpha \in \hat{G}$. Thus there is a bounded subsequence f_{n_j} in A_{Γ} , where $\Gamma = \Gamma_{\alpha}$ (recall Theorem 2.6). By Theorem 2.8, there exist $g_1, \ldots, g_m \in A_{\Gamma}$ and functions $h_{ij} \in A_H$, and $M < \infty$, such that $f_{n_j} = \sum_{i=1}^m h_{ij}g_j$, and $\|h_{ij}\|_A \leq M$, all i, j. By successively extracting subsequences from $\{h_{1j}\}, \{h_{2j}\}, \ldots, \{h_{mj}\}$ and reindexing, we obtain $\psi_1, \ldots, \psi_m \in \mathcal{L}^{\infty}(H^{\perp})$ such that $h_{ij} \cdot \phi \xrightarrow{j} \psi_i$ weakly, $i = 1, \ldots, m$. The map $\psi \mapsto g_i \cdot \psi$ on \mathcal{L}^{∞} is strongly, hence weakly continuous, thus

$$f_{n_j} \cdot \phi = \sum_{i=1}^m g_i \cdot (h_{ij} \cdot \phi) \xrightarrow{j} \sum_{i=1}^m g_i \cdot \psi_i$$
 weakly. \square

COROLLARY 3.9. If $W(\hat{K}) \neq \mathcal{L}^{\infty}(\hat{K})$ then $W(\hat{G}) \neq \mathcal{L}^{\infty}(\hat{G})$. If $\mathcal{M}(\hat{K}) \neq W(\hat{K})$ then $\mathcal{M}(\hat{G}) \neq W(\hat{G})$. (Recall from [6] that $\mathcal{M}(\hat{G}) \subseteq W(\hat{G})$.)

COROLLARY 3.10. If G has an infinite abelian image, then $\mathcal{M}(\hat{G}) \neq W(\hat{G}) \neq \mathcal{L}^{\infty}(\hat{G})$.

Proof. If K is an infinite compact abelian group, then $\mathcal{M}(\hat{K}) \neq W(\hat{K}) \neq \mathcal{L}^{\infty}(\hat{K})$ (see [3, Chapter 4] and [6]). \square

REMARK 3.11. In [4] we show that $W(\hat{G}) \neq \mathcal{L}^{\infty}(\hat{G})$ for any infinite compact group G. In [5] we show that $\mathcal{M}(\hat{G}) \neq W(\hat{G})$ for any compact group G which contains an infinite abelian subgroup.

BIBLIOGRAPHY

- 1. C. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. 11, Interscience, New York, 1962. MR 26 #2519.
- 2. C. Dunkl, Modules over commutative Banach algebras, Monatsh. Math. 74 (1970), 6-14.
- 3. C. Dunkl and D. Ramirez, *Topics in harmonic analysis*, Appleton-Century-Crofts, New York, 1971.
- 4. ——, Existence and nonuniqueness of invariant means on $\mathscr{L}^{\infty}(\hat{G})$, Proc. Amer. Math. Soc. (to appear).
- 5. ——, Fourier-Stieltjes transforms and weakly almost periodic functionals for compact groups (to appear).
 - 6. ——, Weakly almost periodic functionals on the Fourier algebra (to appear).
- 7. S. Helgason, Lacunary Fourier series on noncommutative groups, Proc. Amer. Math. Soc. 9 (1958), 782-790. MR 20 #6667.
- 8. R. Iltis, Some algebraic structure in the dual of a compact group, Canad. J. Math. 20 (1968), 1499–1510. MR 38 #1215.
- 9. D. Rider, Translation-invariant Dirichlet algebras on compact groups, Proc. Amer. Math. Soc. 17 (1966), 977-983. MR 33 #6299.
- 10. ——, Central idempotent measures on unitary groups, Canad. J. Math. 22 (1970), 719-725.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, VIRGINIA 22903